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Abstract

In this paper, we show that the strong conical hull intersection property (CHIP) completely char-
acterizes the best approximation to anyx in a Hilbert spaceX from the set

K : =C ∩ {x ∈ X : −g(x) ∈ S} ,
by a perturbationx − l of x from the setC for somel in a convex cone ofX, whereC is a closed
convex subset ofX, S is a closed convex cone which does not necessarily have non-empty interior,
Y is a Banach space andg : X → Y is a continuousS-convex function. The pointl is chosen as
the weak∗-limit of a net ofε-subgradients. We also establish limiting dual conditions characterizing
the best approximation to anyx in a Hilbert spaceX from the setK without the strong CHIP. The
�-subdifferential calculus plays the key role in deriving the results.
© 2005 Elsevier Inc. All rights reserved.

MSC:41A65; 41A29; 90C30

Keywords:Strong conical hull intersection property;ε-subgradients; Limiting dual conditions; Hilbert spaces;
Constrained best approximation

∗ Corresponding author. Fax: +61293857046.
E-mail addresses:jeya@maths.unsw.edu.au(V. Jeyakumar),hmohebi@mail.uk.ac.ir(H. Mohebi).

1 The authors are grateful to the referee for his valuable suggestions and constructive comments which have
contributed to the final preparation of the paper.

2 Partially completed while he was a visitor at the University of New South Wales, Sydney, Australia.

0021-9045/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jat.2005.04.004

http://www.elsevier.com/locate/jat
mailto:jeya@maths.unsw.edu.au
mailto:hmohebi@mail.uk.ac.ir


146 V. Jeyakumar, H. Mohebi / Journal of Approximation Theory 135 (2005) 145–159

1. Introduction

When it comes to dual characterizations of constrained best approximation, it is not just
the strong conical hull intersection property (CHIP)[6,10,14,17] that matters. The nature
of the dual conditions is critical for a complete characterization. In this paper, we show that
limiting dual conditions, which are described in terms ofε-subgradients, allow complete
characterizations of constrained best approximation.
First, we investigate the problem of whether the best approximation to anyx in a Hilbert

spaceX from the set

K := C ∩ {x ∈ X : −g(x) ∈ S} ,
can be characterized by the best approximation to a perturbationx − l of x from the set
C for somel in X, using the strong CHIP, whereC is a closed convex subset ofX, S is a
closed convex cone in a Banach spaceY, andg : X → Y is a continuousS-convex function.
Solutions to this problem have recently been obtained in various cases of the set

{x ∈ X : −g(x) ∈ S}
in terms of the strong CHIP (see[6,10,14,17,18]). It is known that such a characterization
of the so-called “perturbation property”, in the nonlinear case ofg, requires an additional
regularity condition ong (see [14,17]), which is often restrictive in applications. In this
paper we show that the strong CHIP completely characterizes the perturbation property
without an additional regularity condition ong. We are able to achieve this by choosingl as
the weak∗-limit of a net ofε-subgradients [11,21,22]. We also obtain simple limiting dual
conditions characterizing the best approximation fromK under the strong CHIP.
Second, we examinewhether a dual characterization of the best approximation to anyx in

aHilbert spaceX from the setK holds in the absence of the strongCHIP. It is also known that
dual characterizations of the best approximation fromK in terms of subgradients require a
constraint qualification (see [6,9,20,23]). We show that limiting dual conditions, which are
described in terms ofε-subgradients, hold without any constraint qualifications. We give a
numerical example to illustrate the nature of the limitingε-subgradient conditions.
The layout of the paper is as follows. In Section 2 we collect definitions, notations and

preliminary results that will be used later in the paper. In Section 3, we establish conditions
for the perturbation property and other dual conditions under the strong CHIP. In Section
4, we present asymptotic dual conditions characterizing the best approximation in terms of
ε-subgradients without the strong CHIP.

2. Preliminaries

We begin this section by fixing the notations, definitions and preliminaries that will be
used later in the paper. LetXandYbe Banach spaces. The continuous dual space ofXwill be
denoted byX∗. For a setW ⊂ X∗, the weak∗-closure (resp. closure) ofWwill be denoted
by w∗-clW (resp. clW ). We shall denote by intA the interior ofA, whereA is a subset
of X. For the subsetA of X, the indicator function�A is defined by�A(x) = 0 if x ∈ A
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and�A(x) = +∞ if x /∈ A. The support function�A is defined by

�A(x
∗) = sup

x∈A

x∗(x) (x∗ ∈ X∗).

The epigraph off : X −→ R ∪ {+∞}, Epif, is defined by

Epif = {(x, r) ∈ X × R : x ∈ domf, f (x)�r},
where the domain off, domf, is given by

domf = {x ∈ X : f (x) < +∞}.
Let f : X −→ R ∪ {+∞} be a proper lower semi-continuous convex function. Then the
conjugate function off, denoted byf ∗ : X∗ −→ R ∪ {+∞}, is given by

f ∗(x∗) = sup{x∗(x) − f (x) : x ∈ domf }, (x∗ ∈ X∗).

Note that we have�∗
D = �D for each subsetD of X.

For ε > 0, theε-subdifferential off at a ∈ dom f is defined as the non-empty weak*
closed convex set

�εf (a) = {x∗ ∈ X∗ : f (x) − f (a)�x∗(x − a) − ε ∀x ∈ domf }.
The elements of�εf (a) are calledε-subgradients off ata. For ε = 0, �0f (a) is the usual
subdifferential off at a, and is often denoted by�f (a). See Zalinescu[23] for a detailed
discussion of this set and its properties. Note that

⋂
ε>0 �εf (a) = �f (a). It follows from

the definitions of Epif ∗ and theε-subdifferential off that if a ∈ domf , then

Epif ∗ =
⋃
��0

{(x∗, x∗(a) + � − f (a)) : x∗ ∈ ��f (a)}.

For details see[12,13]. For convenience, we denote the composite mapping� ◦ g by �g,
where� ∈ Y ∗ andg : X −→ Y is a function. For a subsetWof X, define the negative dual
cone ofWby

W� := {x∗ ∈ X∗ : x∗(w)�0 ∀ w ∈ W }
and the positive dual cone ofWbyW⊕ := −W�.Also,W� is called the normal cone of
W at 0. For the non-empty subsetW of X, the conical hull ofW is denoted by coneW. A
functiong : X −→ Y is calledS-convex if

�g(x) + (1− �)g(y) − g(�x + (1− �)y) ∈ S (x, y ∈ X; 0���1),

whereSis a closedconvex cone inY. In particular, ifY = RandS = R+ := {r ∈ R : r�0},
thenS-convex reduces to the usual definition of a convex function. LetC be a non-empty
closed convex subset ofX and let

D := {x ∈ X : −g(x) ∈ S}, (2.1)
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whereg : X −→ Y is a continuousS-convex function. It is easy to check thatD is a closed
convex subset ofX. LetK := C ∩D �= ∅. If K is non-empty, then using the Hanh–Banach
separation theorem we obtain

Epi�K = w∗ − cl(∪�∈S⊕ Epi(�g)∗ + Epi�C). (2.2)

Moreover, ifD is non-empty then

Epi�D = w∗ − cl(∪�∈S⊕Epi(�g)∗). (2.3)

A proof of this result is given in[2,13]. For a non-empty subsetW of X andx ∈ X, we
define the distance fromx toWby

d(x,W) := inf
w∈W

‖x − w‖.

We recall (see[20]) that a pointw0 ∈ W is called a best approximation forx ∈ X (i.e.
w0 ∈ PW(x)), if

d(x,W) = ‖x − w0‖.
If for eachx ∈ X there exists a unique best approximationw0 ∈ W, thenW is called a
Chebyshev subset ofX. Recall (see[7]) that every closed convex set in a Hilbert space is
Chebyshev.
The following lemma,which gives a characterization of the best approximation inBanach

spaces, is well known and is due, independently, to Deutsch [5] and Rubinstein [19] (see,
e.g., [20,23]).

Lemma 2.1. LetX be a Banach space,W be a closed convex subset ofX, x ∈ X, and
w0 ∈ W. Thenw0 ∈ PW(x) if and only if there existsf ∈ (W − w0)

� such that‖f ‖ = 1
andf (x − w0) = ‖x − w0‖.

3. Asymptotic perturbation properties

In this section, we assume thatXandYare Banach spaces and show that the strong CHIP
characterizes an asymptotic perturbation property. We begin by recalling the notion of the
strong CHIP, which was first defined for any finite collection of convex sets in a Hilbert
space in[9], and which plays a central role for instance in constrained best approximation
and optimization (see, e.g. [1,2,6,8–10]).

Definition 3.1. LetC1, andC2 be two closed convex sets inX and letx ∈ C1 ∩ C2. Then
{C1, C2} is said to have the strong CHIP atx, if

(C1 ∩ C2 − x)� = (C1 − x)� + (C2 − x)�.

The pair {C1, C2} is said to have the strong CHIP if it has the strong CHIP at each
x ∈ C1 ∩ C2.
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Note that ifC1 ∩ C2 �= ∅, then we always have

(C1 − x)� + (C2 − x)� ⊂ (C1 ∩ C2 − x)�, (x ∈ X). (3.1)

If Epi �C1+ Epi�C2 is weak
∗-closed then the collection{C1, C2} has the strong CHIP. For

details see[2,4,3,14]. For eachx ∈ X, define

M̃(x) := {
x∗ ∈ X∗ : (x∗, x∗(x)) ∈ w∗ − cl (∪�∈S⊕Epi(�g)∗)

}
. (3.2)

Clearly,M̃(x) is a convex cone inX∗ as(∪�∈S⊕Epi(�g)∗) is a convex cone.

Proposition 3.1. For eachx ∈ X, (D − x)� = M̃(x), whereD is the closed convex set
defined by(2.1).

Proof. Thepointx∗ ∈ (D−x)� if and only if�D(x∗)�x∗(x),which, in turn, is equivalent
to (x∗, x∗(x)) ∈ Epi�D. Since

Epi�D = w∗ − cl (∪�∈S⊕Epi(�g)∗),

it follows that x∗ ∈ (D − x)� if and only if (x∗, x∗(x)) ∈ w∗ − cl (∪�∈S⊕Epi(�g)∗),
which, by definition, is equivalent to the condition thatx∗ ∈ M̃(x). �

It is worth noting thatM̃(x) is a weak∗-closed convex cone ofX∗. We will now see how
M̃(x) can be expressed in terms ofε-subgradients atx for eachx ∈ D.

Lemma 3.1. If x ∈ D, then

M̃(x) =
{

x∗ ∈ X∗ : x∗ = w∗ − lim
�

x∗
� , x∗

� ∈ �ε�(��g)(x), {ε�} ⊂ R+,

{��} ⊂ S⊕, lim
�

(��g)(x) = 0, lim
�

ε� = 0.

}
.

Proof. Let x∗ ∈ M̃(x). Then, by definition (see (3.2)),

(x∗, x∗(x)) ∈ w∗ − cl (∪�∈S⊕Epi(�g)∗). (3.3)

On the other hand, we have

Epi(�g)∗ = ∪ε�0{(y∗, ε + y∗(x) − (�g)(x)) : y∗ ∈ �ε(�g)(x)}.
So,

(x∗, x∗(x)) ∈ w∗ − cl (∪�∈S⊕ ∪ε�0 {(y∗, ε + y∗(x)
−(�g)(x)) : y∗ ∈ �ε(�g)(x)}). (3.4)

Now, we can find nets{ε�}, {r�} ⊂ R+, {��} ⊂ S⊕ and{x∗
�} ⊂ X∗ with x∗

� ∈ �ε�(��g)(x),
for all �, such that

(x∗, x∗(x)) = w∗ − lim
�

(x∗
� , ε� + x∗

�(x) − (��g)(x)).

Thus,

x∗ = w∗ − lim
�

x∗
� (3.5)
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and

x∗(x) = lim
�

[ε� + x∗
�(x) − (��g)(x)]. (3.6)

In view of (3.5) and (3.6), we obtain

lim
�

x∗
�(x) = x�(x) = lim

�
[ε� + x∗

�(x) − (��g)(x)],

which implies that

lim
�

[ε� − (��g)(x)] = 0. (3.7)

Sincex ∈ D, −g(x) ∈ S, and so,−(��g)(x)�0 for all �. This, together with (3.7) and the
fact thatε��0 for all �, implies that lim� (��g)(x) = lim� ε� = 0.

Conversely, suppose that there exist nets{ε�}, {r�} ⊂ R+, {��} ⊂ S⊕ and{x∗
�} ⊂ X∗

with x∗
� ∈ �ε�(��g)(x) such thatx∗ = w∗ − lim� x∗

� , and lim� (��g)(x) = lim� ε� = 0.
Sincex∗

� ∈ �ε�(��g)(x) for all �, it follows that

(��g)(y) − (��g)(x)�x∗
�(y − x) − ε� ∀ y ∈ X, ∀ �. (3.8)

If y ∈ D, then−g(y) ∈ S , and so,(��g)(y)�0 for all �. It now follows from (3.8) that

(��g)(x)�x∗
�(x − y) + ε� ∀ y ∈ D ∀ �. (3.9)

Sincex∗(y) = lim� x∗
�(y) for eachy ∈ X, and lim� (��g)(x) = lim� ε� = 0, we obtain

from (3.9) that

x∗(y − x)�0 ∀ y ∈ D.

Hence,x∗ ∈ (D − x)� = M̃(x), by Proposition 3.1. �

Let us now define a convex cone that is related toM̃(x). For eachx ∈ X and� ∈ S⊕,

define

C�(x) := cone{�(�g)(x) : (�g)(x) = 0}
and

M(x) := ∪�∈S⊕C�(x).

It is easy to verify thatM(x) is a convex cone inX∗ with M(x) ⊂ M̃(x). The following
simple example illustrates that, in general,M(x) �= M̃(x).

Example 3.1. Let g : R2 −→ R be given by

g(x, y) = (x2 + y2)
1
2 − y,

and letx = (0, 1) ∈ R2 andS = R+. Then for each� ∈ S⊕, we have that�g(x) = 0,
�(�g)(x) = {(0, 0)}, and so,M(x) = {(0, 0)}, whereas̃M(x) = (D−x)� = −(R×R+).
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Moreover, a direct calculation shows that(−1,0, 0) ∈ cl(∪�∈S⊕Epi(�g)∗), but (−1,0, 0) /∈
∪�∈S⊕Epi(�g)∗, and so∪�∈S⊕Epi(�g)∗ is not closed.

We will now show that if∪�∈S⊕Epi(�g)∗ is weak∗-closed, thenM(x) = M̃(x).

Proposition 3.2. If the set∪�∈S⊕Epi(�g)∗ is weak∗-closed inX∗ × R, then, for each
x ∈ D, M(x) = M̃(x) = (D − x)�.

Proof. Let x ∈ D be arbitrary. Then, the conclusion will follow from Proposition 3.1 if we
show thatM̃(x)⊂ M(x).Tosee this, letx∗ ∈ M̃(x).Since∪�∈S⊕Epi(�g)∗ isweak∗-closed,
it follows from the definition ofM̃(x) that(x∗, x∗(x)) ∈ ∪�∈S⊕Epi(�g)∗. So, there exists
� ∈ S⊕ such that for eachy ∈ D, x∗(y)− (�g)(y)�x∗(x). If x ∈ D, then− (�g)(x)�0.
This gives us(�g)(x) = 0. Hence, for eachy ∈ D, x∗(y)− x∗(x)�(�g)(y) − (�g)(x),
thus,x∗ ∈ �(�g)(x), and hence,x∗ ∈ M(x). �

Note that∪�∈S⊕Epi(�g)∗ is weak∗-closed if, in particular, the interior ofS, int(S), is
non-empty and−g(x0) ∈ int(S) for somex0 ∈ X. For details see[15], and for other
generalized interior-point conditions see [16].
In the sequel, we assume thatX is a Hilbert space. The following characterization of best

approximation in Hilbert spaces is well known (see [7]).

Lemma 3.2. LetX be a Hilbert space;and letW be a closed convex subset ofX, x ∈ X,

andw0 ∈ W. Thenw0 = PW(x) if and only ifx − w0 ∈ (W − w0)
�.

Wewill now show that the strongCHIP of{C,D} completely characterizes a perturbation
property. Let us first see a basic perturbation property of the best approximation.

Proposition 3.3. Letx ∈ X, and letx0 ∈ K. If x0 = PC(x − l) for somel ∈ M̃(x0). Then
x0 = PK(x).

Proof. Assume thatx0 = PC(x − l) for somel ∈ M̃(x0). In view of Lemma 3.2, we have
x − l − x0 ∈ (C − x0)

�, and so by (3.1) and Proposition 3.1, we get

x − x0 ∈ (C − x0)
� + l

⊂ (C − x0)
� + M̃(x0)

= (C − x0)
� + (D − x0)

�

⊂ (K − x0)
�.

Hence,x − x0 ∈ (K − x0)
�.Again, applying Lemma 3.2, we havex0 = PK(x). �

Theorem 3.1. Letx0 ∈ K. Then the following assertions are equivalent:

(1) {C,D} has the strong CHIP atx0;
(2) For anyx ∈ X,

x0 = PK(x) if and only if x0 = PC(x − l) for some l ∈ M̃(x0).
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Proof. (1) �⇒ (2).Assume that (1) holds. For anyx ∈ X, by Proposition 3.3, we have if
x0 = PC(x−l) for somel ∈ M̃(x0), thenx0 = PK(x).Thereforewe only need to show that
the converse is true. Suppose thatx0 = PK(x).By Lemma 3.2, we getx−x0 ∈ (K−x0)

�.

Using the strong CHIP, we can findl1 ∈ (C − x0)
� such thatx − x0 − l1 ∈ (D − x0)

�.

Since(D − x0)
� = M̃(x0), it follows that l := x − x0 − l1 ∈ M̃(x0). So,x − l − x0 =

l1 ∈ (C −x0)
�. It now follows from Lemma 3.2 thatx0 = PC(x − l), and hence (2) holds.

(2) �⇒ (1).Assume that(2) holds. Letz ∈ (K−x0)
� be arbitrary. Letx = z+x0 ∈ X.

Then,x − x0 = z ∈ (K − x0)
�, and so by Lemma 3.2, we havex0 = PK(x). Now, it

follows from the assumption that there existsl ∈ M̃(x0) such thatx0 = PC(x − l). Again
by Lemma 3.2, we getx − l − x0 ∈ (C − x0)

�. Therefore,

z = x − x0 = x − l − x0 + l ∈ (C − x0)
� + M̃(x0) = (C − x0)

� + (D − x0)
�.

This give us that

(K − x0)
� ⊂ (C − x0)

� + (D − x0)
�.

This, together with (3.1) implies that

(K − x0)
� = (C − x0)

� + (D − x0)
�.

Hence,{C,D} has the strong CHIP atx0. �

The following corollary follows easily from Theorem 3.1.

Corollary 3.1. The following statements are equivalent:

(1) {C,D} has the strong CHIP;
(2) For eachx ∈ X, PK(x) = PC(x − l) for somel ∈ M̃(PK(x)).

Theorem 3.2. Suppose that{C,D} has the strong CHIP. Then for eachx ∈ X, the element
x0 = PK(x) ∈ K satisfiesPK(x) = PC(x − l) for somel ∈ M̃(x0).

Proof. Let x ∈ X be arbitrary. SinceK is a Chebyshev set inX, we conclude that there
existsx0 ∈ K such thatx0 = PK(x). Now, by Theorem 3.1, there existsl ∈ M̃(x0) such
thatx0 = PC(x − l). �

As a consequence of Theorem3.2, we observe that if Epi�C +Epi�D is closed inX∗×R,
then for eachx ∈ X, the elementx0 := PK(x) ∈ K satisfiesPK(x) = PC(x − l) for some
l ∈ M̃(x0).

In the following we shall give an asymptotic dual characterization of best approximation
using the strong CHIP. Recall that�‖x − x0‖(x0) is given by

�‖x − x0‖(x0) = {v ∈ X∗ : ‖v‖ = 1, v(x − x0) = ‖x − x0‖}.
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Theorem 3.3. LetX be a Hilbert space;let x ∈ X andx0 ∈ K. Assume that{C,D} has
the strong CHIP atx0. Then the following assertions are equivalent:

(1) x0 = PK(x);
(2) 0∈ �‖x − x0‖(x0) + (C − x0)

� + M̃(x0);
(3) x0 = PC(x − l) for somel ∈ M̃(x0).

Proof. [(1) ⇐⇒ (2)]. Suppose thatx0 = PK(x). Then, it follows from Lemma 2.1 that
there existsv ∈ X∗ such thatv ∈ (K − x0)

�, ‖v‖ = 1, andv(x − x0) = ‖x − x0‖.
This implies that there existsv ∈ X∗ such that−v ∈ �‖x − x0‖(x0) andv ∈ (K − x0)

�.

Since{C,D} has the strong CHIP atx0, (K − x0)
� = (C − x0)

� + (D − x0)
�. Then for

v ∈ (K − x0)
� there existv1 ∈ (C − x0)

� andv2 ∈ (D − x0)
� such thatv = v1 + v2.

Sincev2 ∈ (D − x0)
� = M̃(x0), we conclude thatv ∈ (C − x0)

� + M̃(x0). But, we have
−v ∈ �‖x − x0‖(x0). Hence,

0 ∈ �‖x − x0‖(x0) + (C − x0)
� + M̃(x0).

Conversely, assume that

0 ∈ �‖x − x0‖(x0) + (C − x0)
� + M̃(x0).

Then there existv1 ∈ �‖x − x0‖(x0), v2 ∈ (C − x0)
� + M̃(x0) such thatv1 + v2 = 0.

SinceM̃(x0) = (D − x0)
�, we getv2 ∈ (C − x0)

� + (D − x0)
� = (K − x0)

�.

Now, lety ∈ K := C ∩ D be arbitrary. Then,

v2(y − x0)�0 ∀ y ∈ K. (3.10)

Sincev1 ∈ �‖x0 − x‖(x0) andv1 = −v2, it follows from (3.10) that

‖x0 − x‖�‖x − y‖ ∀ y ∈ K

and so

‖x − x0‖� inf
y∈K

‖x − y‖ = d(x,K)�‖x − x0‖.

Hence,‖x − x0‖ = d(x,K). That is,x0 = PK(x).

[(3) ⇐⇒ (1)]. The implication(3) �⇒ (1) follows from Proposition 3.3. To establish
[(1) �⇒ (3)], suppose that (1) holds. Since{C,D} has the strong CHIP atx0 and
x0 = PK(x), it follows from Theorem 3.1 thatx0 = PC(x − l) for somel ∈ M̃(x0). �

Observe that the equivalence(1) ⇐⇒ (2) holds in general Banach spaceX. The following
theorem extends the corresponding results in[14,17].

Theorem 3.4. Let X be a Hilbert space,and letx0 ∈ K. The following assertions are
equivalent:

(1) (K − x0)
� = (C − x0)

� + M(x0);
(2) For anyx ∈ X,

x0 = PK(x) if and only if x0 = PC(x − l) for some l ∈ M(x0).
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Proof. (1) �⇒ (2).Assume thatx0 = PC(x − l) for somel ∈ M(x0). By Lemma 3.2, we
havex − l − x0 ∈ (C − x0)

�, and so

x − x0 ∈ (C − x0)
� + l ⊂ (C − x0)

� + M(x0) = (K − x0)
�.

Thus,x − x0 ∈ (K − x0)
�. Again, applying Lemma 3.2, we havex0 = PK(x). To see

the converse implication, letx ∈ X, and letx0 = PK(x). Then by Lemma 3.2, we get
x − x0 ∈ (K − x0)

�. Using (1), we can findl ∈ M(x0) such thatx − x0 − l ∈ (C − x0)
�.

By Lemma 3.2,x0 = PC(x − l), and hence (2) holds.
(2) �⇒ (1).Assume that(2) holds. Letz ∈ (K − x0)

� be arbitrary. Letx = z + x0 ∈ X.

Then,x − x0 = z ∈ (K − x0)
�, and so by Lemma 3.2, we havex0 = PK(x). Now, it

follows from the assumption that there existsl ∈ M(x0) such thatx0 = PC(x − l). Again
by Lemma 3.2, we getx − l − x0 ∈ (C − x0)

�. Therefore,

z = x − x0 = x − l − x0 + l ∈ (C − x0)
� + M(x0).

This give us that

(K − x0)
� ⊂ (C − x0)

� + M(x0).

On the other hand, asM(x0) ⊂ (D − x0)
�, we have

(C − x0)
� + M(x0) ⊂ (C − x0)

� + (D − x0)
� ⊂ (K − x0)

�.

Hence,(K − x0)
� = (C − x0)

� + M(x0). �

In passing, observe that the condition(1)of Theorem 3.4 was called the Basic constraint
qualification in[17], whereY = Rm andS = Rm+. Observe also from Proposition 3.2
that if ∪�∈S⊕Epi(�g)∗ is weak∗-closed inX∗ × R, then the condition(K − x0)

� =
(C − x0)

� + M(x0) is equivalent to the strong CHIP.
We now deduce non-asymptotic dual characterizations of best approximations fromThe-

orem 3.3 under the additional condition that∪�∈S⊕Epi(�g)∗ is weak∗-closed.

Corollary 3.2. Let X be a Hilbert space;let x ∈ X and x0 ∈ K. Assume that{C,D}
has the strong CHIP atx0 and that∪�∈S⊕Epi(�g)∗ is weak∗-closed inX∗ × R. Then the
following assertions are equivalent:

(1) x0 = PK(x);
(2) 0∈ �‖x − x0‖(x0) + �(�g)(x0) + (C − x0)

�, and(�g)(x0) = 0 for some� ∈ S⊕;
(3) 0∈ �‖x − x0‖(x0) + (C − x0)

� + M(x0);
(4) x0 = PC(x − l) for somel ∈ M(x0).

Proof. The implications(1) �⇒ (2) and(4) �⇒ (1) follow from Theorem 3.3, since
M̃(x0) = M(x0). The implication(2) �⇒ (3) is obvious, and the implication(3) �⇒ (4)
follows from Theorem 3.3, becausẽM(x0) = M(x0). �

Let us now see that the so-called (non-asymptotic) perturbation property of[10] holds in
the case whereD is described by finite-dimensional linear inequality constraints. LetX be
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a Hilbert space andC be a closed convex subset ofX. Let hj ∈ X \ {0} (j = 1, . . . , m).

Then by Riesz’s Lemma, for eachhj , there exists a bounded linear functionalfj onX such
thatfj : X −→ R is defined by

fj (x) = 〈x, hj 〉 ∀ x ∈ X; j = 1, . . . , m.

Moreover,‖hj‖ = ‖fj‖ := sup{|fj (x)| : x ∈ X, ‖x‖ = 1} (j = 1, . . . , m). Let
Y := Rm, b = (b1, . . . , bm) ∈ Rm and

S := Rm+ := {z = (z1, . . . , zm) ∈ Rm : zi �0 ∀ i = 1, . . . , m}.
Define the functiong : X −→ Rm by

g(x) := (f1(x) − b1, . . . , fm(x) − bm) ∀ x ∈ X

andD := {x ∈ X : −g(x) ∈ S}.Theng is a continuousS-convex function andD is a closed
convex subset ofX. DefineK := C ∩D �= ∅. Let gi(x) := fi(x)− bi (i = 1, . . . , m; x ∈
X), and

I (x) := {i ∈ {1,2, . . . , m} : gi(x) = 0} ∀ x ∈ K.

Note that ifx0 ∈ K and� ∈ S⊕, and if (�g)(x0) = 0, then� = (�1, . . . , �m) ∈ Rm,
�i �0 (i = 1, . . . , m) and�i = 0 for eachi /∈ I (x0). Note also that in the case of finitely
many linear constraints, whereS = Rm+ andY = Rm, the set∪�∈S⊕Epi(�g)∗ is always a
closed set inX∗ × R. If x0 ∈ K, thenM̃(x0) = M(x0) = ∪�∈S⊕H�(x0), where

H�(x0) = cone

{
m∑

i=1

�ihi : � = (�1, . . . , �m) ∈ Rm+; �i = 0 ∀ i /∈ I (x0)

}
.

Tosee this, first observe that if� ∈ S⊕ and(�g)(x0) = 0, then�(�g)(x0) =
{∑m

i=1
�ihi

}
,

where� = (�1, . . . , �m) for some�i �0 (i = 1, . . . , m) and�i = 0 for eachi /∈ I (x0).

This gives us that

M(x0) = ∪�∈S⊕H�(x0).

Since∪�∈S⊕Epi(�g)∗ is closed inX∗ × R, the result follows from Proposition 3.2.
By using Theorem 3.1, we now see that{C,D} has the strong CHIP atx0 ∈ K is

equivalent to the statement that, for anyx ∈ X,

x0 = PK(x) if and only if x0 = PC

(
x −

m∑
i=1

�ihi

)
for some�i �0 (i = 1, . . . , m) and�i = 0 for eachi /∈ I (x0).

4. Limiting dual conditions for best approximation

In this section we assume thatXandYare Banach spaces.We obtain limiting dual condi-
tions characterizing best approximation overK := C∩D without a constraint qualification.
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We first see how(K −x)� can be expressed in terms of nets ofε-subgradients.We provide
a proof which extends the proof of Lemma 3.1.

Lemma 4.1. Letx ∈ K be arbitrary. Then,

(K − x)� =


x∗ ∈ X∗ : x∗ = w∗ − lim

�
(x∗

� + y∗
� ), x∗

� ∈ �ε� (��g)(x), y∗
� ∈ �r��C(x),

{ε�} and{r�} ⊂ R+, {��} ⊂ S⊕, lim
�

(��g)(x) = 0,

lim
�

ε� = 0 and lim
�

r� = 0.

 .

Proof. Assume thatx∗ ∈ (K−x)�.Then,�K(x∗)�x∗(x), and so(x∗, x∗(x)) ∈ Epi �K.

Since (by (2.2))

Epi �K = w∗ − cl (∪�∈S⊕Epi(�g)∗ + Epi�C),

we have

(x∗, x∗(x)) ∈ w∗ − cl (∪�∈S⊕Epi(�g)∗ + Epi�C). (4.1)

On the other hand,

Epi(�g)∗ = ∪ε�0{(y∗, ε + y∗(x) − (�g)(x)) : y∗ ∈ �ε(�g)(x)}
and

Epi�c = Epi�∗
C = ∪r �0{(z∗, r + z∗(x) − �C(x)) : z∗ ∈ �r�C(x)}.

Therefore, by (4.1) we have

(x∗, x∗(x)) ∈ w∗ − cl (∪�∈S⊕ ∪ε�0 {(y∗, ε + y∗(x)
−(�g)(x)) : y∗ ∈ �ε(�g)(x)} + Epi�∗

C). (4.2)

From (4.2), we can find nets{ε�}, {r�} ⊂ R+, {��} ⊂ S⊕ and {x∗
�}, {y∗

�} ⊂ X∗ with
x∗
� ∈ �ε�(��g)(x) andy∗

� ∈ �r��C(x) for all �, such that

(x∗, x∗(x)) = w∗ − lim
�

(x∗
� + y∗

� , ε� + r� + x∗
�(x) + y∗

�(x) − (��g)(x) − �C(x)).

So,

x∗ = w∗ − lim
�

(x∗
� + y∗

�) (4.3)

and

x∗(x) = lim
�

[ε� + r� + x∗
�(x) + y∗

�(x) − (��g)(x) − �C(x)]. (4.4)

In view of (4.3), (4.4) and thatx ∈ K ⊂ C, we obtain

lim
�

[x∗
�(x) + y∗

�(x)] = x∗(x) = lim
�

[ε� + r� + x∗
�(x) + y∗

�(x) − (��g)(x)],
which implies that

lim
�

[ε� + r� − (��g)(x)] = 0. (4.5)
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Sincex ∈ K ⊂ D, then−g(x) ∈ S, and hence−(��g)(x)�0 for all�. This, together with
(4.5) and the fact thatε��0 andr��0 for all �, implies that lim� (��g)(x) = lim� ε� =
lim� r� = 0.
Conversely, suppose that there exist nets{ε�}, {r�} ⊂ R+, {��} ⊂ S⊕ and{x∗

�}, {y∗
�} ⊂

X∗ with x∗
� ∈ �ε�(��g)(x) andy∗

� ∈ �r��C(x), for all�, such thatx∗ = w∗−lim� (x∗
� +y∗

�),

and lim� (��g)(x) = lim� ε� = lim� r� = 0. Sincex∗
� ∈ �ε�(��g)(x) andy∗

� ∈ �r��C(x)

for all �, it follows that

(��g)(y) − (��g)(x)�x∗
�(y − x) − ε� ∀ y ∈ X ∀ �, (4.6)

and

�C(y)�y∗
�(y − x) − r� ∀ y ∈ X ∀ �. (4.7)

If y ∈ K ⊂ D, then−g(y) ∈ S and�C(y) = 0. So,(��g)(y)�0 for all �. Therefore, in
view of (4.6) and (4.7), we obtain

(��g)(x)�(x∗
� + y∗

�)(x − y) + ε� + r� ∀ y ∈ K ∀ �. (4.8)

Sincex∗(y) = lim� (x∗
� + y∗

�)(y) for eachy ∈ X, and lim� (��g)(x) = lim� ε� =
lim� r� = 0, it follows from (4.8) that for eachy ∈ K, x∗(y − x)�0. Hence,x∗ ∈
(K − x)�. �

Theorem 4.1. Let X be a Hilbert space,x ∈ X, and let x0 ∈ K. Then the following
assertions are equivalent:

(1) x0 = PK(x);
(2) x − x0 = w∗ − lim� (x∗

� + y∗
�), 0 = lim� (��g)(x0), 0 = lim� ε�, 0 = lim� r�, for

some nets{ε�}, {r�} ⊂ R+, {��} ⊂ S⊕ and{x∗
�}, {y∗

�} ⊂ X∗ with x∗
� ∈ �ε�(��g)(x0) and

y∗
� ∈ �r��C(x0) for all �.

Proof. By Lemma 3.2, we havex0 = PK(x) if and only if x − x0 ∈ (K − x0)
�. Hence,

by Lemma 4.1, this is equivalent to (2).�

Remark 4.1. Note that ifX andYare separable Banach spaces, then Lemmas 3.1, 4.1 and
Theorem 4.1 hold for sequences, instead of nets.

The following example illustrates that in the absence of a constraint qualification the
ε-subdifferentials in the description of the limiting dual conditions in Theorem 4.1 are
essential.

Example 4.1. Letg : R2 −→ R be given by

g(x, y) = (x2 + y2)
1
2 − y.

Letx = (−1,1) ∈ R2, S = R+, and

C = {(x, y) ∈ R2 : x�0, 0�y�1}.
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ThenC is a closed convex subset ofR2, and

D = {(x, y) ∈ R2 : −g(x, y) ∈ S} = {(x, y) ∈ R2 : x = 0, y�0}.
Now, letx0 = (0, 1) ∈ K := C ∩D. It is clear thatx0 = PK(x).Also, observe that for any
� > 0 andε > 0, we have

�ε(�g)(x0) = {(x, y) ∈ R2 : x2 + (y + �)2��2, y� − ε}.
For eachn = 1,2, . . . , let εn = 1

n
, rn = 0, �n = 1

2(n + 2
n
) + 1, x∗

n = (−1− 1
n
,− 1

n
),

andy∗
n = 0. Then,x∗

n ∈ �εn(�ng)(x0), y∗
n ∈ �rn�C(x0), (�ng)(x0) = 0 for all n�1,

limn→+∞ εn = limn→+∞ rn = 0, and

w∗ − lim
n→+∞ (x∗

n + y∗
n) = (−1,0) = x − x0.

Note that(−1,0) /∈ cl(M(x0), since, for each� ∈ S⊕, (�g)(x0) = 0 and�(�g)(x0) =
{(0, 0)}.
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