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Abstract

In this paper, we show that the strong conical hull intersection property (CHIP) completely char-
acterizes the best approximation to arin a Hilbert spaceX from the set

K:=CNn{xeX:—gk)eS},

by a perturbationc — [ of x from the setC for somel in a convex cone oX, whereC is a closed
convex subset oX, Sis a closed convex cone which does not necessarily have non-empty interior,
Y is a Banach space and: X — Y is a continuousS-convex function. The poirtis chosen as

the weakK-limit of a net ofe-subgradients. We also establish limiting dual conditions characterizing
the best approximation to anyin a Hilbert spacexX from the setk without the strong CHIP. The
e-subdifferential calculus plays the key role in deriving the results.

© 2005 Elsevier Inc. All rights reserved.

MSC:41A65; 41A29; 90C30

Keywords:Strong conical hull intersection propergssubgradients; Limiting dual conditions; Hilbert spaces;
Constrained best approximation

* Corresponding author. Fax: +612 9385 7046.
E-mail addressegeya@maths.unsw.edu.@d Jeyakumar)hmohebi@mail.uk.ac.ifH. Mohebi).

1The authors are grateful to the referee for his valuable suggestions and constructive comments which have
contributed to the final preparation of the paper.

2 Partially completed while he was a visitor at the University of New South Wales, Sydney, Australia.

0021-9045/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jat.2005.04.004


http://www.elsevier.com/locate/jat
mailto:jeya@maths.unsw.edu.au
mailto:hmohebi@mail.uk.ac.ir

146 V. Jeyakumar, H. Mohebi / Journal of Approximation Theory 135 (2005) 145-159
1. Introduction

When it comes to dual characterizations of constrained best approximation, it is not just
the strong conical hull intersection property (CH[B)10,14,17] that matters. The nature
of the dual conditions is critical for a complete characterization. In this paper, we show that
limiting dual conditions, which are described in termssefubgradients, allow complete
characterizations of constrained best approximation.

First, we investigate the problem of whether the best approximation tw iswgy Hilbert
spaceX from the set

K=Cn{xeX:—gk) eSS},

can be characterized by the best approximation to a perturbation of x from the set
C for somel in X, using the strong CHIP, whef@is a closed convex subset ¥f Sis a

closed convex cone in a Banach sp#candg : X — Y is a continuou$-convex function.
Solutions to this problem have recently been obtained in various cases of the set

(xeX:—gkx) eSS}

in terms of the strong CHIP (s¢6,10,14,17,18)). It is known that such a characterization

of the so-called “perturbation property”, in the nonlinear casg,sequires an additional
regularity condition org (see [14,17]), which is often restrictive in applications. In this
paper we show that the strong CHIP completely characterizes the perturbation property
without an additional regularity condition @nWe are able to achieve this by choositag

the weakK-limit of a net ofe-subgradients [11,21,22]. We also obtain simple limiting dual
conditions characterizing the best approximation fi¢minder the strong CHIP.

Second, we examine whether a dual characterization of the best approximatiomxto any
a Hilbert spacX from the seK holds in the absence of the strong CHIP. Itis also known that
dual characterizations of the best approximation fibm terms of subgradients require a
constraint qualification (see [6,9,20,23]). We show that limiting dual conditions, which are
described in terms af-subgradients, hold without any constraint qualifications. We give a
numerical example to illustrate the nature of the limitingubgradient conditions.

The layout of the paper is as follows. In Section 2 we collect definitions, notations and
preliminary results that will be used later in the paper. In Section 3, we establish conditions
for the perturbation property and other dual conditions under the strong CHIP. In Section
4, we present asymptotic dual conditions characterizing the best approximation in terms of
e-subgradients without the strong CHIP.

2. Preliminaries

We begin this section by fixing the notations, definitions and preliminaries that will be
used later in the paper. L¥tandY be Banach spaces. The continuous dual spaxewif be
denoted byX*. For a setW C X*, the weaK-closure (resp. closure) &Y will be denoted
by w*-cl W (resp. clW). We shall denote by im the interior of A, whereA is a subset
of X. For the subseA of X, the indicator functiord4 is defined byd(x) = 0ifx € A
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ando4 (x) = +oo if x ¢ A. The support functiom 4 is defined by

oa(x™) =supx*(x) (*eX").
xeA

The epigraph off : X — R U {400}, Epi f, is defined by
Epif ={(x,r) € X x R:x edomf, f(x)<r},
where the domain of, dom, is given by
domf ={xeX: f(x) <+4o0}.

Let f : X — R U {+o0} be a proper lower semi-continuous convex function. Then the
conjugate function of, denoted byf* : X* — R U {+o0}, is given by

FR(*) = SUPL¥F () — f(x) : x edomf), (x* € X*).

Note that we havé}, = o for each subseb of X.
Fore > 0, thee-subdifferential off ata € domf is defined as the non-empty weak*
closed convex set

Ocf(a) ={x* € X*: f(x) — f(a)=x*(x —a) — e Vx € domf}.

The elements of, f (a) are callece-subgradients ofata. Fore = 0, 0o f (a) is the usual
subdifferential off ata, and is often denoted hyf (a). See Zalinesc(23] for a detailed
discussion of this set and its properties. Note fRat o 0. f(a) = 0 f(a). It follows from
the definitions of Epjf* and thes-subdifferential of thatifa € dom f, then

Epif* = (J (" x"@ +e— f(@) 12" € 0:f @)

=0

For details se¢l2,13]. For convenience, we denote the composite mapping by Ag,
whered € Y* andg : X — Y is a function. For a subs®{ of X, define the negative dual
cone ofW by

WO = {x* € X*: x*(w)<0 Vwe W}

and the positive dual cone @ by W® := —w©_ Also, W€ is called the normal cone of
W at 0. For the non-empty subs® of X, the conical hull oW is denoted by con®&. A
functiong : X — Y is calledS-convex if

28x)+(1—-Dg(y) —glx+A—-MDy)eS (x,yeX; 0<ALD),

whereSis a closed convex coneIn particular,ifY = RandS = Ry :={r e R: r >0},
thenS-convex reduces to the usual definition of a convex functionClied a non-empty
closed convex subset ifand let

D:={xeX:—gkx)eSs} (2.1)
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whereg : X — Y is a continuou$§-convex function. It is easy to check tiiats a closed
convex subset oX. Let K := C N D # @. If Kis non-empty, then using the Hanh—Banach
separation theorem we obtain

Epiox = w* — cl(Ucge Epi(1g)* + Epiocc). (2.2)
Moreover, ifD is non-empty then
Epiop = w* — cl(U,c5e Epi (1g)"). (2.3)

A proof of this result is given ir§2,13]. For a non-empty subs@é of X andx € X, we
define the distance fromto W by

dix, W) = ul}ren“V lx —w]l.

We recall (sed20]) that a pointwg € W is called a best approximation fare X (i.e.
wo € Py (x)), if

d(x, W) =[x — woll.

If for eachx € X there exists a unique best approximation € W, thenW is called a
Chebyshev subset df. Recall (seg7]) that every closed convex set in a Hilbert space is
Chebyshev.

The following lemma, which gives a characterization of the best approximation in Banach
spaces, is well known and is due, independently, to Deutsch [5] and Rubinstein [19] (see,
e.g., [20,23]).

Lemma 2.1. Let X be a Banach spacd¥ be a closed convex subsetXf x € X, and
wo € W. Thenwg € Py (x) if and only if there existy € (W — wo)© such that| f|| = 1
and f(x — wo) = [lx — woll.

3. Asymptotic perturbation properties

In this section, we assume théandY are Banach spaces and show that the strong CHIP
characterizes an asymptotic perturbation property. We begin by recalling the notion of the
strong CHIP, which was first defined for any finite collection of convex sets in a Hilbert
space if9], and which plays a central role for instance in constrained best approximation
and optimization (see, e.g. [1,2,6,8-10]).

Definition 3.1. Let C1, andC, be two closed convex sets ¥and letx € C1 N C,. Then
{C1, C2} is said to have the strong CHIP>atif

(C1NC2—x)® = (C1—x)° + (C2—x)C.

The pair{C1, C2} is said to have the strong CHIP if it has the strong CHIP at each
x e Ci1NCo.
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Note that ifC1 N C2 # ¢, then we always have
(C1—x)° 4+ (C2—x)® Cc(C1NC2—x)°, (x € X). (3.1)

If Epi o¢,+ Epioc, is weak-closed then the collectiofCy, C»} has the strong CHIP. For
details se¢2,4,3,14]. For each € X, define

M@x) = {x* € X* : (x*,x*(x)) € w* — ¢l (Uje50EPi (A0)")]) . (3.2)

CIearIy,]VI(x) is a convex cone iX™* as(U,cse Epi(1g)*) is a convex cone.

Proposition 3.1. For eachx € X, (D — x)© = 1\7I(x), whereD is the closed convex set
defined by(2.1).

Proof. The pointc* € (D—x)® ifandonly ifap (x*) <x*(x), which, inturn, is equivalent
to (x*, x*(x)) € Epigp. Since

Epiop = w* — ¢l (U;c50 Epi (19)"),
it follows thatx* € (D — x)© if and only if (x*, x*(x)) € w* — ¢l (UesoEpi(19)"),
which, by definition, is equivalent to the condition théite M (x). O

__Itis worth noting thatV (x) is a weaK-closed convex cone d*. We will now see how
M (x) can be expressed in termssfubgradients at for eachx € D.

Lemma 3.1. If x € D, then

N x* e X*ix*=w*—1lim x}, x; € 0, (A48 (x), {4} C Ry,
M(x) = K

{/a} C SO, Iigcn (Zxg)(x) =0, Iign ey =0.

Proof. Letx* € M(x). Then, by definition (see (3.2)),
(", x%(x)) € w* — cl (U;e50Epi (1)"). (3.3)
On the other hand, we have
Epi(1g)" = Ue>0o{(y", & + y*(x) — (Ag)(x)) : y* € 0 (4g)(x)}.
So,

(", x*(x)) € w* —cl(Uzese Ug =0 {0, & + y* (%)
—(A8)(x)) : y* € 0:(A8)(X)}). (3.4)

Now, we can find netée,}, {r«} C Ry, {44} C S® and{x}} C X* with x} € 0;,(148)(x),
for all o, such that

x*, x*(x)) = w* — |ig] (X3, eq + x3(x) — (Ag8)(x)).
Thus,

xF=w" - Iig(n Xy (3.5)
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and

xF(x) = lim [e5 + x5 (%) = (Aag) ()] (3.6)
In view of (3.5) and (3.6), we obtain

lim xy(x) = x*(x) = lim [, + x5 (x) — (Az8) ()],
which implies that

lim [e — (228)(x)] = 0. (3.7)

Sincex € D, —g(x) € S, and so—(/4g)(x) >0 for all o.. This, together with (3.7) and the
fact thate, >0 for all o, implies that lim, (4,¢)(x) = lim, ¢, = 0.

Conversely, suppose that there exist rets, {r,} C Ry, {44} C S® and{x}} c X*
with x} € ¢, (1,8)(x) such thatc* = w* — lim, x}, and lim, (A,¢)(x) = lim, &, = 0.
Sincex} € 0., (2,8)(x) for all o, it follows that

(2a8)(¥) = (Za@)(X) Zx5(y —x) —&y VyeX, Va. (3.8)
If y € D, then—g(y) € S, and so(/,g)(y) <0 for all «. It now follows from (3.8) that
(Aag)(X)<xj(x —y)+e, YyeDVo. (3.9)

Sincex*(y) = lim, x}(y) for eachy € X, and lim, (14g)(x) = lim, &, = 0, we obtain
from (3.9) that

x*(y—x)<0 VyeD.

Hencex* € (D — x)© = M(x), by Proposition 3.1. [J

Let us now define a convex cone that is reIatetﬂt(x). For eachxr € X and/i e S9,
define

C;(x) := cone{d(4g)(x) : (Ag)(x) = 0}
and
M(x) :=Uje50Cy(x).

It is easy to verify that (x) is a convex cone iX™* with M(x) C 1\71(x). The following
simple example illustrates that, in generdl(x) # M (x).

Example 3.1. Letg : R> — R be given by

1
gx,y) = (2 +y?)7 —y,

and letx = (0,1) € R? andS = R.. Then for each e S®, we have thatlg(x) = 0,
d(Ag)(x) = {(0,0)}, and soM (x) = {(0, 0)}, whereasV (x) = (D —x)© = —(Rx R,).
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Moreover, adirect calculation shows tliatl, 0, 0) € cl(U,c 50 Epi(1g)*), but (—1,0, 0) ¢
Ujese Epi(Ag)*, and sdJ, e Epi(4g)™* is not closed.

We will now show that ifU, . ¢e Epi (Ag)* is weaK-closed, therM (x) = 1\7I(x).

Proposition 3.2. If the setU,ssEpi(1g)* is weak-closed inX* x R, then,for each
xeD, M(x)=M(x)= (D —x)°.

Proof. Letx € D be arbitrary. Then, the conclusion will follow from Proposition 3.1 if we
showthatV (x) C M (x). Toseethis, let* € M(x). SinceJ,cge Epi (1g)* isweak-closed,

it follows from the definition ofM (x) that (x*, x*(x)) € U,cge Epi(1g)*. So, there exists

/. € §® such that for each € D, x*(y)— (1g)(y) <x*(x). If x € D, then— (1g)(x) 0.
This gives us(Ag)(x) = 0. Hence, for eacly € D, x*(y)— x*(x) <(Lg)(y) — (Lg)(x),
thus,x* € d(Ag)(x), and hencex* € M(x). O

Note thatU,. e Epi(1g)* is weak-closed if, in particular, the interior d, int(S), is
non-empty and-g(xp) € int(S) for somexp € X. For details se¢l5], and for other
generalized interior-point conditions see [16].

In the sequel, we assume théis a Hilbert space. The following characterization of best
approximation in Hilbert spaces is well known (see [7]).

Lemma 3.2. Let X be a Hilbert spaceand letW be a closed convex subsetofx € X,
andwg € W. Thenwg = Py (x) if and only ifx — wg € (W — wg)©.

We will now show that the strong CHIP o', D} completely characterizes a perturbation
property. Let us first see a basic perturbation property of the best approximation.

Proposition 3.3. Letx € X, and letxg € K. If xog = Pc(x — 1) for somd < M(xo). Then
xo = Px(x).

Proof. Assume thakg = Pc(x — 1) for somel e 1\7I(xo). In view of Lemma 3.2, we have
x —1 —xp € (C —x0)©, and so by (3.1) and Proposition 3.1, we get

x—x0 € (C—x0)® +1
C (C —x0)® + M(xo)
= (C —x0)® + (D — x0)®
c (K —x0)°.

Hence,x — xg € (K — x0)©. Again, applying Lemma 3.2, we hawg = Pk (x). O

Theorem 3.1. Letxg € K. Then the following assertions are equivalent:

(1) {C, D} has the strong CHIP ato;
(2) Foranyx € X,

x0 = Px(x) ifandonlyif xg= Pc(x —1) forsome [ € M(xo).
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Proof. (1) = (2). Assume that (1) holds. For anye X, by Proposition 3.3, we have if
x0 = Pc(x—1) forsome € M (xg), thenxg = Pk (x). Therefore we only need to show that
the converse is true. Suppose th@it= Pk (x). By Lemma 3.2, we get —xg € (K —x0)©.
Using the strong CHIP, we can firid € (C — x0)© such thate — xo — [1 € (D — x0)©.
Since(D — x0)© = M(xo), it follows that! := x — xg — I1 € M(xg). SO,x — [ — xg =
I1 € (C —x0)®. It now follows from Lemma 3.2 thaty = P¢(x — ), and hence (2) holds.
(2) = (1).Assumethaf2) holds. Letz € (K —xg)© be arbitrary. Lek = z+xp € X.
Then,x —xg = z € (K — x0)©, and so by Lemma 3.2, we hawg = Pk (x). Now, it
follows from the assumption that there exibts M (xp) such thatcg = Pc(x — 1). Again
by Lemma 3.2, we get — [ — xg € (C — x0)©. Therefore,

z=x—xo=x—Il—xo+1 € (C—x0)° + M(x0) = (C —x0)© + (D — x0)©.
This give us that

(K —x0)° C (C —x0)© + (D — x0)°.
This, together with (3.1) implies that

(K —x0)© = (C = x0)© + (D — x0)©.
Hence{C, D} has the strong CHIP ap. [J

The following corollary follows easily from Theorem 3.1.

Corollary 3.1. The following statements are equivalent:

(1) {C, D} has the strong CHIP; _
(2) For eachx € X, Px(x) = Pc(x — 1) for some € M(Pk (x)).

Theorem 3.2. Suppose thaiC, D} has the strong CHIP. Then for eaghe X, the element
x0 = Pk (x) € K satisfiesPg (x) = Pc(x — 1) for somel € M (xg).

Proof. Letx € X be arbitrary. Sinc& is a Chebyshev set i, we conclude that there
existsxg € K such thatcg = Pk (x). Now, by Theorem 3.1, there existE M (xg) such
thatxg = Pc(x —1). O

As a consequence of Theor@n2, we observe that if Epic +Epiop is closed inX* x R,
then for eachr € X, the elementq := Pk (x) € K satisfiesPk (x) = Pc(x — ) for some
I € M(xg).

In the following we shall give an asymptotic dual characterization of best approximation
using the strong CHIP. Recall thatx — xgl|(xp) is given by

Ollx = xoll(x0) = {v € X : vl = 1, v(x — x0) = [lx — xoll}.
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Theorem 3.3. Let X be a Hilbert spacetet x € X andxg € K. Assume thatC, D} has
the strong CHIP atcg. Then the following assertions are equivalent:

(1) xo = Pk (x); N
(2) 0€ dllx — xol(x0) + (C — x0)© + M (x0);
(8) xo0 = Pc(x — 1) for some € M (xp).

Proof. [(1) <= (2)]. Suppose thatg = Pk (x). Then, it follows from Lemma 2.1 that
there existw € X* such thatv € (K — x0)©, |lv] = 1, andv(x — xg) = [lx — xol.
This implies that there exists € X* such that-v € d||x — xg||(xg) andv € (K — x0)©.
Since{C, D} has the strong CHIP ab, (K — x0)© = (C — x0)© + (D — x0)©. Then for
v € (K — x0)© there existy € (C — x0)© andvz € (D — x0)© such thaty = vy + va.
Sincev, € (D —x0)© = M(xo) we conclude that € (C —x0)© + M(xo) But, we have
—v € d|lx — xol|(x0). Hence,

0 € d)lx — xoll(x0) + (C — x0)© + M (x0).
Conversely, assume that
0 € dlx — xoll(x0) + (C — x0)© + M(x0).

Then there existy € d||lx — xoll(x0), v2 € (C — x0)© + M(xo) such thatvy + v, = 0.
SinceM (xg) = (D — x0)©, we getvs € (C — x0)© + (D — x0)© = (K — x0)©.
Now, lety € K := C N D be arbitrary. Then,

v2(y —x0)<0 VyekKk. (3.10)
Sincev; € d||xg — x||(xg) andvy = —wp, it follows from (3.10) that

lxo—xI<llx —yll VyekK
and so

lx —xoll< inf [lx — y|l = d(x, K)<|lx — xoll.

yeK
Hence,||x — xo|| = d(x, K). Thatis,xg = Pk (x).
[(8) <= (1)]. The implication(3) — (1) follows from Proposition 3.3. To establish

[((1) = (3)], suppose that (1) holds. Sin¢€, D} has the strong CHIP atp and
xo = Pk (x), it follows from Theorem 3.1 thatg = Pc(x —[) for somel € M (xg). O

Observe that the equivalent® <= (2) holds in general Banach spaxeT he following
theorem extends the corresponding resul{df17].

Theorem 3.4. Let X be a Hilbert spaceand letxg € K. The following assertions are
equivalent:

(1) (K —x0)° = (C — x0)© + M(x0);
(2) For anyx € X,

x0 = Px(x) ifandonlyif xo= Pc(x —1) for some [ € M(xp).
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Proof. (1) = (2). Assume thaty = P¢(x — ) for somel € M (xg). By Lemma 3.2, we
havex — 1 — xg € (C — x0)©, and so

x—x0 € (C—x0)® +1C(C—x0)° + M(xg) = (K —x0)®.

Thus,x — xo € (K — x0)©. Again, applying Lemma 3.2, we hawg = Pk (x). To see
the converse implication, let € X, and letxg = Pk (x). Then by Lemma 3.2, we get
x —xg € (K —x0)©. Using (1), we can find € M (xg) such thatr —xg—[ € (C — x0)®©.
By Lemma 3.2x0 = Pc(x — [), and hence (2) holds.

(2) = (1). Assume that2) holds. Letz € (K — xo)© be arbitrary. Letr = z + xg € X.
Then,x —xg = z € (K — x0)©, and so by Lemma 3.2, we hawg = Px (x). Now, it
follows from the assumption that there exibts M (xp) such thatcg = Pc(x — [). Again
by Lemma 3.2, we get — [ — xg € (C — x0)©. Therefore,

z=x—xo=x—1—x0+1 € (C—x0)® + M(xp).
This give us that
(K =x0)© C (C —x0)© + M(x0).
On the other hand, a¥ (xg) C (D — x0)©, we have
(C —x0)© + M(x0) C (C —x0)® + (D — x0)® C (K — x0)°.

Hence, (K — x0)© = (C — x0)© + M(xp). O

In passing, observe that the conditidn of Theorem 3.4 was called the Basic constraint
qualification in[17], whereY = R™ andS = R’. Observe also from Proposition 3.2
that if U;.ge Epi(Ag)* is weak-closed inX* x R, then the condition K — x0)© =
(C — x0)© + M (xp) is equivalent to the strong CHIP.

We now deduce non-asymptotic dual characterizations of best approximations from The-
orem 3.3 under the additional condition thagi. e Epi (1g)* is weakK-closed.

Corollary 3.2. Let X be a Hilbert spacelet x € X andxp € K. Assume thaf{C, D}
has the strong CHIP atp and thatU,. 5o Epi(1g)* is weaK-closed inX* x R. Then the
following assertions are equivalent:

(1) xo = Pk (x);

(2) 0 € d|lx — xoll(x0) + d(Ag)(x0) + (C — x0)©, and (Ag)(xo) = O for some/ € S9;
(3) 0 € d]lx — xoll(x0) + (C — x0)© + M(xq);

(4) xo = Pc(x — 1) for somel € M (xp).

Proof. The implications(1) = (2) and(4) = (1) follow from Theorem 3.3, since
M (x0) = M(xo0). Theimplication2) = (3)isobvious, andtheimplicatiol8) = (4)
follows from Theorem 3.3, becaudé(xg) = M (xg). O

Let us now see that the so-called (non-asymptotic) perturbation propgfi§]dfolds in
the case wherB is described by finite-dimensional linear inequality constraints XUe¢
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a Hilbert space an@ be a closed convex subset®f Leth; € X \ {0} (j =1,...,m).
Then by Riesz’s Lemma, for eaéh, there exists a bounded linear functiorfalon X such
that f; : X — R s defined by

fix)=x,h;) VxeX; j=1,...,m.
Moreover, ||a;ll = [fjll := sup{lfi)| : x € X, x| = 1} (G = 1,...,m). Let
Y :=R" b= (by,...,b,) € R and

S=RY ={z=(1,....20) e R" : ; 20Vi=1,...,m)}.
Define the functiory : X — R by

gx) = (fi(x) =b1, ..., fu(x) —bp) VxeX

andD := {x € X : —g(x) € S}. Thengis a continuou$-convex function anb is a closed
convex subset oX. DefineK :=CND #@.Letg;(x) := fi(x)—b; G =1,...,m; x €
X), and

Ix)={ie{l1,2,...,m}:g(x)=0} VxekKk.

Note that ifxg € K andi € S®, and if (1g)(xg) = 0, thend = (11, ..., An) € R™,
4i=20(@G =1,...,m)and/; = 0foreach ¢ I(xp). Note also that in the case of finitely
many linear constraints, whefe= R} andY = R", the setJ, 5o Epi(/g)* is always a
closed setinX* x R. If xg € K, then]\71(xo) = M (x0) = Ujc50 H;(x0), Where

H)(xp) = cone Z Aihi =1, ..., ) €eRY; 4; =0V i ¢ I(xo)} .
i=1
To see this, first observe thatlife S® and(ig)(xg) = 0, thend(lg)(xo) = {Zm_l iihi} ,
wherel = (A1, ..., 4y) forsomei; >0 (G = 1,...,m) and4; = O for eachi ¢ I(xp).
This gives us that
M (x0) = U eg50 H; (x0).

SinceU, cgo Epi(4g)* is closed inX* x R, the result follows from Proposition 3.2.
By using Theorem 3.1, we now see tHat, D} has the strong CHIP afp € K is
equivalent to the statement that, for ang X,

xo = Pg(x) ifandonlyif xo= Pc (x -y )vih,)
i=1

forsomel; >0( =1, ...,m)and/; = 0 for eachi ¢ I(xp).

4. Limiting dual conditions for best approximation

In this section we assume théandY are Banach spaces. We obtain limiting dual condi-
tions characterizing best approximation ofer= C N D without a constraint qualification.
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We first see howK — x)© can be expressed in terms of nets &fubgradients. We provide
a proof which extends the proof of Lemma 3.1.

Lemma 4.1. Letx € K be arbitrary. Then,

x*e X*: x*=wt - |i|2'1 &+ 0, x) € 0g,(Jag)(x), yi € 0r,0c(x),
(K —x)© = {ea} and{r,} € Ry, (Ao} € @, lim (Z,8)(x) =0,
lim e, =0and limr, = 0.
o o

Proof. Assume that* € (K —x)©. Then,ox (x*) <x*(x), and sox*, x*(x)) € Epi ox.
Since (by (2.2))
Epi ok = w* — ¢l (U)cs0 Epi(4g)" + Epiac),
we have
(x*, x*(x)) € w* — cl (U 50 Epi(4g)* + Epioc). 4.1)
On the other hand,
Epi(48)" = Uezol(y™, e + " (x) — (20)(x)) : y* € 0:(A8) ()}
and
Epio. = Epid;r = Up>o{(z", r + 2% (x) — dc(x)) : 2* € 0,0¢(x)).
Therefore, by (4.1) we have

(", x*(x)) € w" — el (Ujese Uez0 (67, & + ¥ (x)
—(28)(x)) 1 y* € 0¢(48) (x)} + EpidC). (4.2)

From (4.2), we can find nets,}, {r,} C Ry, {4} C S® and{x}}, {y}} C X* with
x} € 0g,(Ayg)(x) andy} € 0,,0¢ (x) for all o, such that

(5 w7 () = w = lim (e 45, €0+ a4 x5, (0) + 35, (0) = (Aag) (X) = dc ().
So,

x = w —lim (& + 7)) (4.3)
and

x*(x) = lim [ + ry + x5 () + y; (%) = (lag) () = ¢ (x)]. (4.4)
In view of (4.3), (4.4) and that € K C C, we obtain

lim [y, (X) + y; (0] = x*(x) = im [eq +ro + x5 () + 5 (0) = (Aag) ()],
which implies that

|iam [0 + 1o — (A0g)(x)] = 0. (4.5)
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Sincex € K C D, then—g(x) € S, and hence-(4,g)(x) >0 for all «. This, together with
(4.5) and the fact that, >0 andr, >0 for all &, implies that lim, (1,¢)(x) = lim, g, =
limy ry, = 0.

Conversely, suppose that there exist fets, {ry} C Ry, {4,} € S® and{x}}, {y}} C
X*withx} € 0., (Ay8)(x) andy} € 0,,0¢(x), foralla, suchthak* = w*—lim,, (x;+y2),
and lim, (1,8)(x) = limy &, = limy ry, = 0. Sincex} € 0., (4,g)(x) andy} € 0,,0¢(x)
for all o, it follows that

(o) (y) — (@) (x) Zx,(y —x) —&y VyeXVa, (4.6)
and
ocMZy,(y=x)—ry VyeXVa 4.7

If y € K C D, then—g(y) € S anddc(y) = 0. So, (A,g)(y) <0 for all .. Therefore, in
view of (4.6) and (4.7), we obtain

Q)OS +yD(x—y)+ex+ry YVyeKVa. (4.8)

Sincex*(y) = lim, (x} + yi)(y) for eachy € X, and lim, (1,8)(x) = lim, &, =
lim, r, = O, it follows from (4.8) that for eachy € K, x*(y — x)<0. Hence,x* €
(K -x°. O

Theorem 4.1. Let X be a Hilbert spacex € X, and letxp € K. Then the following
assertions are equivalent:

(1) xo = Px (x);

(2) x —x0 = w* —limy (x; + y3), 0=1limy (1,g)(x0), 0 = lim, &y, 0 = lim, ry, for
some net$sy}, {re} C Ry, {4y} € S® and{x}}, {y*} c X* with x} € 0, (1,g)(x0) and
Vi € 0r,0c (xp) for all a.

Proof. By Lemma 3.2, we havey = Pk (x) if and only if x — xg € (K — x0)©. Hence,
by Lemma 4.1, this is equivalent to (2)[]

Remark 4.1. Note that ifX andY are separable Banach spaces, then Lemmas 3.1, 4.1 and
Theorem 4.1 hold for sequences, instead of nets.

The following example illustrates that in the absence of a constraint qualification the
e-subdifferentials in the description of the limiting dual conditions in Theorem 4.1 are
essential.

Example 4.1. Letg : R> — R be given by
1
g(x.y) = (x* 492 —y.
Letx = (—=1,1) € R? § = R,, and

C={(x,y) e IRZ:x>O, 0<y<1}).
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ThenC is a closed convex subsetléf, and
D ={(x,y) € R? : —gx,y) e S}={x,y) € R?:x = 0, y>0}.

Now, letxg = (0, 1) € K := CN D. ltis clear thatvg = Pk (x). Also, observe that for any
4 > 0ande > 0, we have

0:(Ag)(x0) = {(x,y) € R? : x? + (y + 1)?<J2, y= —¢).

Foreachh = 1,2,...,lete, = 1,1, =0, 2y, = S+ 2) + 1, xf = (-1— 1, -1y,
andyy = 0. Then,x € 0,,(4ng)(x0), yi € 0r,0c(x0), (4n8)(x0) = O for all n>1,
|imn‘>+oo En = Iimn*)+oo rp = 0, and

*_ H * kY _ _ _
w nﬂ)rj:oo(x,ﬂryn)—( 1,0) = x — xo.

Note that(—1,0) ¢ cI(M(xo), Since, for eachi € S®, (1g)(xg) = 0 andd(Ag)(xg) =
{(0,0)}.
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